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Front Matter Preface

Introduction

Analysis is the study of limits and related concepts - notably, sequences, series, differentiation and
integration. In Analysis III, we formalise the foundations of integration using Darboux sums, before
exploring sequences and series of functions. We end with contour integrals and complex analysis, which
excluded from MA258.

This document is intended to broadly cover all the topics within the (Mathematical) Analysis III modules.
All knowledge and algorithms contained within the module guide for MA131 will be assumed as prior
knowledge in this document.

Disclaimer: I make absolutely no guarantee that this document is complete nor without error. In
particular, any content covered exclusively in lectures (if any) will not be recorded here. This document
was written during the 2022 academic year, so any changes in the course since then may not be accurately
reflected.

Notes on formatting
New terminology will be introduced in italics when used for the first time. Named theorems will also be
introduced in italics. Important points will be bold. Common mistakes will be underlined. The latter
two classifications are under my interpretation. YMMV.

Content not taught in the course will be outlined in the margins like this. Anything outlined like this
is not examinable, but has been included as it may be helpful to know alternative methods to solve
problems.

The table of contents above, and any inline references are all hyperlinked for your convenience.

Scalars are written in lowercase italics, c, or using greek letters.

Vectors are written in lowercase bold, v, or rarely overlined, ←→v , where more contrast or clarity is
required.

History
First Edition: 2023-04-06∗

Current Edition: 2023-04-21

Authors
This document was written by R.J. Kit L., a maths student. I am not otherwise affiliated with the
university, and cannot help you with related matters.

Please send me a PM on Discord @Desync#6290, a message in the WMX server, or an email to War-
wick.Mathematics.Exchange@gmail.com for any corrections. (If this document somehow manages to
persist for more than a few years, these contact details might be out of date, depending on the main-
tainers. Please check the most recently updated version you can find.)

If you found this guide helpful and want to support me, you can buy me a coffee!

(Direct link for if hyperlinks are not supported on your device/reader: ko-fi.com/desync.)

∗Storing dates in big-endian format is clearly the superior option, as sorting dates lexicographically will also sort dates
chronologically, which is a property that little and middle-endian date formats do not share. See ISO-8601 for more details.
This footnote was made by the computer science gang.
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MA244-MA258 Riemann Integration

1 Riemann Integration

Given a function f : [a,b]→ R, we can interpret the Riemann integral as the signed area enclosed between
the graph of f and the x-axis.

We formalise this notion with the use of Darboux sums.

1.1 Partitions
We begin by introducing some terminology for intervals and partitions.

An interval [a,b] is non-trivial if a < b. Two intervals I and J are almost-disjoint if they have at most
one common point – that is, |I ∩ J | = 1.

Let I = [a,b] be a non-trivial closed interval over R. A partition of I is a collection {I1, . . . ,In} of
almost-disjoint non-trivial intervals called subintervals with union

⋃
i Ii = I.

Note that, because a partition must be almost-disjoint, but union to the total interval, it is entirely
determined by the set of points {xi}ni=0 satisfying

a = x0 < x1 < · · · < xn = b

corresponding to the endpoints of the component intervals.

Given a partition of P = {I1, . . . ,In} of an interval I = [a,b], we define the quantities:

M := sup
I

f m := inf
I
f

Mk := sup
Ik

f mk := inf
Ik

f

Note that if f is unbounded, then some of these quantities will be infinite.

Given a function f : [a,b]→ R and a partition P = {I1, . . . ,In} of [a,b], we define the upper Darboux sum
of f with respect to P as:

U(f,P ) :=

n∑
k=1

Mk|Ik|

and similarly, the lower Darboux sum of f with respect to P as:

L(f,P ) :=

n∑
k=1

mk|Ik|

Intuitively, the upper (lower) Darboux sum under-approximates (resp. over-approximates) the area
bounded by f and the x-axis by approximating the area A under the function over each subinterval
Ik as a rectangle with height infx∈Ik f(x) (resp. sup).

This gives, by construction,

m(b− a) ≤ L(f,P ) ≤ A ≤ U(f,P ) ≤M(b− a)

where the outer terms are the Darboux sums using the whole interval as a partition. If A fails to exist,
then the inequality is simply

m(b− a) ≤ L(f,P ) ≤ U(f,P ) ≤M(b− a)

Denote by P the set of all partitions of [a,b]. Then we define the upper Darboux integral of f by:

U(f) := inf
p∈P

U(f,P )
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MA244-MA258 1.2 Refinements

and similarly, the lower Darboux integral

L(f) := sup
p∈P

L(f,P )

We say that a bounded function f : [a,b] → R is Darboux integrable or Riemann integrable∗ if U(f) =

L(f), and we define the Riemann integral
∫ b

a
f(x) dx by∫ b

a

f(x) dx := U(f) = L(f)

noting that unbounded functions are not Riemann integrable by this definition, as one of the sums will
be infinite.

1.2 Refinements
A partition Q = {J1, . . . ,Jℓ} of [a,b] is a refinement of a partition P = {I1, . . . ,In} if every subinterval
Ik ∈ P is the union of intervals Jk ∈ Q.

Using our alternative characterisation of partitions as collection of interval endpoints, Q = {y0, . . . ,yℓ}
is a refinement of P = {x0, . . . ,xn} if and only if P ⊆ Q.

Note that this means that every partition is a refinement of itself. It is also possible for neither of two
partitions to be refinements of each other.

Theorem 1.1. Let f : I → R be a bounded function, and P,Q be partitions of I, with Q a refinement of
P . Then,

L(f,P ) ≤ L(f,Q) ≤ U(f,Q) ≤ U(f,P )

That is, refining a partition gives a better approximation to the desired area.

Theorem 1.2. Let f : I → R be a bounded function, and P,Q be arbitrary partitions of I. Then,

L(f,P ) ≤ U(f,Q)

Corollary 1.2.1. Let f : I → R be a bounded function. Then,

L(f) ≤ U(f)

Theorem 1.3. Let f : I → R be a bounded function. Then, f is Riemann integrable if and only if for
every ϵ > 0, there exists a partition P of I such that

U(f,P )− L(f,P ) < ϵ

We give an alternative characterisation of Riemann integrability, through the use of sequences.

Theorem 1.4. Let f : I → R be a bounded function. Then, f is Riemann integrable if and only if there
exists a sequence of partitions Pn such that

lim
n→∞

U(f,Pn)− L(f,Pn) < ϵ

∗So, the notes call all of the above sums “Riemann sums”, but general Riemann sums take the height of the function
at arbitrary points within each subinterval, often the leftmost and rightmost points, defining the left and right Riemann
sums, while Darboux sums take the infimum and supremum instead.

Unlike upper and lower Darboux sums, left and right Riemann sums do not obey a nice inequality, but in the limit, the
two notions agree, and indeed, a function is Darboux integrable if and only if it is Riemann integrable, and the values of
the two integrals agree whenever they exist.

To mark the distinction, and for consistency with most other sources, “Darboux” is used above when describing these
sums, but due to their equivalence, I will continue to use “Riemann” when describing these integrals.
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MA244-MA258 1.3 Continuity & Integrability

1.3 Continuity & Integrability
We recall that a function f : I → R is continuous at x ∈ I if for every ϵ > 0, there exists a δ(x,ϵ) > 0
such that for all y ∈ I,

|x− y| < δ → |f(y)− f(x)| < ϵ

noting that we may only talk about one-sided continuity for the endpoints of I. Then, we say that f is
continuous on I if f is continuous at every x ∈ I, with the case of endpoints understood as one-sided
continuity.

Note that, in this definition, δ is a function of both x and ϵ. If we restrict δ to be a function of ϵ, we
obtain the definition of uniform continuity :

Given a function f : I → R, we say f is uniformly continuous if for every ϵ > 0, there exists δ(ϵ) > 0
such that for all x,y ∈ I, we have,

|x− y| < δ → |f(y)− f(x)| < ϵ

The difference here is that, in uniform continuity there is a globally applicable δ that depends on only
ϵ, while in (ordinary) continuity there is only a locally applicable δ that depends on both ϵ and x.
Thus, continuity is a local property of a function – that is, whether a function f is continuous or not
at a particular point x can be determined by looking only at the values of f in an arbitrarily small
neighbourhood of x. Conversely, uniform continuity is a global property of a function.

Uniform continuity is a stronger continuity condition than continuity: that is, a function that is uniformly
continuous is continuous, but a function that is continuous is not necessarily uniformly continuous.

In particular, functions that are unbounded on a bounded domain cannot be uniformly continuous. For
instance, the function f : (0,1) → R defined by x 7→ 1

x approaches infinity at an increasing rate as x
approaches the origin, so it is not possible to find a δ independent of x that satisfies the definition of
continuity.

Functions that have gradients that become unbounded on an infinite domain also cannot be uniformly
continuous. For instance, f : R → R defined by x 7→ ex is continuous everywhere, but its gradient
becomes arbitrarily large, so it is possible to find arbitrarily small intervals in which f varies by more
than ϵ.

Theorem 1.5. Let I be a compact subset of R (i.e. a closed interval), and suppose f : I → R is
continuous. Then, f is uniformly continuous.

We now give some sufficient (but not necessary) conditions for Riemann integrability.

Theorem 1.6. If f : [a,b]→ R is continuous, then it is Riemann integrable.

Theorem 1.7. If f : [a,b]→ R is monotonic, then it is Riemann integrable.

1.4 Algebra of Integrals
Theorem 1.8. Let f,g : [a,b]→ R be Riemann integrable functions, and let c ∈ R. Then, f + g and cf
are Riemann integrable, and satisfy,∫ b

a

cf = c

∫ b

a

f,

∫ b

a

(f + g) =

∫ b

a

f +

∫ b

a

g

Theorem 1.9. Let f,g : [a,b]→ R be integrable functions such that f(x) ≤ g(x) for all x ∈ [a,b]. Then,∫ b

a

f ≤
∫ b

a

g
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MA244-MA258 1.5 Fundamental Theorem of Calculus

Corollary 1.9.1. If f : [a,b]→ R is integrable, then,

m(b− a) ≤
∫ b

a

f ≤M(b− a)

Corollary 1.9.2. If f : [a,b]→ R is continuous, then there exists c ∈ [a,b] such that

f(c) =
1

b− a

∫ b

a

f

Theorem 1.10. If f : [a,b]→ R is integrable, then |f | is integrable, and,∣∣∣∣∣
∫ b

a

f

∣∣∣∣∣ ≤
∫ b

a

|f |

Theorem 1.11. Let f : [a,b] → R and c ∈ (a,b). Then, f is integrable on [a,b] if and only if it is
integrable on [a,c] and [c,b], and moreover,∫ c

a

f +

∫ b

c

f =

∫ b

a

f

Theorem 1.12. If f : [a,b]→ R is integrable and g : R→ R is continuous, then g ◦ f is integrable.

Note that the composition of two integrable functions is not necessarily integrable.

Theorem 1.13. If f,g : [a,b] → R are integrable, then the product function fg is integrable, and, if
additionally 1

g is bounded, then f
g is integrable.

1.5 Fundamental Theorem of Calculus
The fundamental theorem of calculus links the notions of differentiation and integration together as
inverses.

Theorem 1.14 (FTC I). Let f : [a,b]→ R be continuous, and define F : [a,b]→ R by

F (x) =

∫ x

a

f(t) dt

Then, F is uniformly continuous on [a,b] and differentiable on (a,b), with F ′(x) = f(x) for all x ∈ (a,b),
and we say that F is an antiderivative of f .

Equivalently,

d

dx

∫ x

a

f(t) dt = f(x)

Proof. We compute the derivative of F (x) from the definition:

F ′(x) = lim
h→0

F (x+ h)− F (x)

h

= lim
h→0

1

h

[∫ x+h

a

f(t) dt−
∫ x

a

f(t) dt

]

= lim
h→0

1

h

∫ x+h

x

f(t) dt
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By the mean value theorem for integrals, there exists c ∈ [x,x+ h] such that f(c) · h =
∫ x+h

x
f(t) dt, so,

= lim
h→0

f(c)

c ∈ [x,x+ h], so by the sandwich theorem,

= f(x)

■

Corollary 1.14.1. Let f : [a,b]→ R be continuous with antiderivative F on [a,b]. Then,∫ b

a

f(t) dt = F (b)− F (a)

Theorem 1.15 (FTC II). Let f : [a,b] → R be integrable on [a,b] with continuous antiderivative F on
(a,b). Then, ∫ b

a

f(x) dx = F (b)− f(a)

Unlike in the corollary above, FTC II does not require continuity of f over [a,b], and is thus a slightly
stronger result.

Proof. We wish to show

L(f,P ) ≤ F (b)− F (a) ≤ U(f,P )

for every partition P of [a,b]. By taking a supremum on the left, and infimum on the right, we obtain
L(f) ≤ F (b)− F (a) ≤ U(f), and since f is integrable, both sides reduce to equalities.

Now, consider any partition P = {a = x0,x1, . . . ,xn−1,xn = b}. On every interval Ik = [xk−1,xk], for
every ck ∈ (xk−1,xk) we have,

inf
Ik

f(x)(xk − xk−1) ≤ f(ck)(xk − xk−1) ≤ sup
Ik

f(x)(xk − xk−1)

As F is continuous on [xk−1,xk] and differentiable on (xk−1,xk), by the mean value theorem there exists
ck such that F (xk)− F (xk−1) = f(ck)(xk − xk−1), so we have,

inf
Ik

f(x)(xk − xk−1) ≤ F (xk)− F (xk−1) ≤ sup
Ik

f(x)(xk − xk−1)

Summing over k = 1 to n, we have,

L(f,P ) ≤
n∑

k=1

F (xk)− F (xk−1) ≤ U(f,P )

This sum telescopes to,

L(f,P ) ≤ F (x0)− F (xn)≤ U(f,P )

L(f,P ) ≤ F (b)− F (a) ≤ U(f,P )

thus proving the result. ■
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Theorem 1.16. If f : [a,b]→ R is integrable on [a,b] and is continuous from the right at a, then,

lim
h→0+

1

h

∫ a+h

a

f(t) dt = f(a)

and similarly, if f is continuous from the left at b,

lim
h→0+

1

h

∫ b

b−h

f(t) dt = f(b)

More generally, if (Ih) is a sequence of intervals such that |Ih| → 0, x ∈ Ih for all h, and f is continuous
at x, then,

lim
h→0

1

|Ih|

∫
Ih

f(t) dt = f(x)

Integration by parts and u-substitution are both consequences of the fundamental theorem of calculus:

Theorem 1.17 (IBP). If f,g : [a,b] → R are continuous on [a,b] and differentiable on (a,b) such that
f ′,g′ are integrable on [a,b], then,∫ b

a

f(x)g′(x) dx = f(b)g(b)− f(a)g(a)−
∫ b

a

f ′(x)g(x) dx

Theorem 1.18 (u-sub). Let f : [a,b]→ R be differentiable on [a,b] (understood as one-sided differentia-
bility at the endpoints) such that f ′ is integrable on [a,b], and let g be continuous on f

(
[a,b]

)
. Then,∫ b

a

g
(
f(x)

)
f ′(x) dx =

∫ f(b)

f(a)

g(u) du

1.6 Improper Integration
So far, we have only defined Riemann integrals for bounded functions over bounded intervals. Now, we
extend this definition to include unbounded functions and/or unbounded intervals using limits. This
extension is called an improper Riemann integral.

Let f : (a,b] → R be Riemann integrable over every interval [c,b] ⊂ (a,b]. Then, the improper intergral
of f on [a,b] is defined as, ∫ b

a

f(x) dx := lim
ϵ→0+

∫ b

a+ϵ

f(x) dx

If this limit is finite, then the improper integral converges, diverging otherwise.

Similarly, if f : [a,b)→ R is integrable over every interval [a,c] ⊂ [a,b), then the improper intergral of f
on [a,b] is defined as, ∫ b

a

f(x) dx := lim
ϵ→0+

∫ b−ϵ

a

f(x) dx

We can also define an inproper integral if the function is unbounded at an interior point c.

Let f : [a,b] \ {c} → R be a function integrable on any closed interval not containing c ∈ [a,b]. That is,
f is integrable on [a,c− ϵ1] and [c+ ϵ2,b] for all sufficiently small ϵ1,ϵ2 > 0. Then,∫ b

a

f(x) dx := lim
ϵ1→0+

∫ c−ϵ1

a

f(x) dx+ lim
ϵ2→0+

∫ b

c+ϵ2

f(x) dx
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For unbounded domains of integration, we take a limit of ordinary integrals:

If f : [a,∞)→ R is integrable for every interval [a,y] ⊂ [a,∞), then,∫ ∞

a

f(x) dx := lim
y→∞

∫ y

a

f(x) dx

Similarly, if f : (−∞,b]→ R is integrable for every interval [y,b] ⊂ (−∞,b], then,∫ b

−∞
f(x) dx := lim

y→−∞

∫ b

y

f(x) dx

and if f : R→ R is integrable on every bounded interval [a,b], then,∫ ∞

−∞
f(x) dx := lim

a→−∞

∫ c

a

f(x) dx+ lim
b→∞

∫ b

c

f(x) dx

for any c ∈ R.

The space of functions that are improperly Riemann integrable forms a linear space: that is, if f and g
are improperly integrable on the same domain, then αf +βg is also improperly integrable over the same
domain for any α,β ∈ R.

Theorem 1.19 (Absolute Comparison Test). Let f : [a,∞) → R be integrable on [a,b] for every b > a.
If
∫∞
a
|f | <∞, then

∫∞
a

f converges, and we say that
∫∞
a

f is absolutely convergent.

Moreover, if g : [a,∞) → [0,∞) is a function such that |f | ≤ g and
∫∞
a

g < ∞, then
∫∞
a

f is absolutely
convergent.

2 Sequences and Series of Functions

2.1 Convergence
Let (fn)

∞
n=0 be a sequence of functions fn : Ω→ R. We say that (fn) converges pointwise to f : Ω→ R

if for every x ∈ Ω,

lim
n→∞

fn(x) = f(x)

and we denote this relation by fn → f .

Intuitively, a sequence (fn) of functions converges pointwise to a function f if, when we fix any choice
of input value x, the resulting sequence of output terms

(
fn(x)

)∞
n=0

(which is just a sequence of real
numbers) converges to the output value f(x) in the usual sense.

Note that the pointwise limit of a sequence of continuous functions is not necessarily continuous.

Let (fn)
∞
n=0 be a sequence of functions fn : Ω→ R. We say that (fn) converges uniformly to f : Ω→ R

if for any ϵ > 0, there exists N(ϵ) such that |fn(x)− f(x)| < ϵ for every x ∈ Ω and every n > N(ϵ), and
we denote this relation by fn ⇒ f .

Uniform convergence is to pointwise convergence what uniform continuity is to ordinary continuity: in
uniform convergence, N depends only on ϵ, and not on x, while in pointwise continuity, we began by
fixing a value of x.

To simplify notation, we define the ℓ∞, supremum or Chebyshev norm by:

∥f∥∞ := sup
x∈Ω
|f(x)|

Using this, we can simplify the definition of uniform convergence to:

fn ⇒ f := ∀ϵ > 0,∃N(ϵ),∀n > N(e) : ∥fn − f∥∞ < ϵ.

Analysis III | 7
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Theorem 2.1. Uniform convergence implies pointwise convergence, but not the converse.

A sequence (fn) of functions in Ω is uniformly Cauchy if for every ϵ > 0, there exists N(ϵ) such that
∥fn − fm∥∞ < ϵ for all n,m > N(ϵ).

Theorem 2.2. A sequence (fn) of functions is uniformly convergent if and only if it is uniformly Cauchy.

Theorem 2.3. If a sequence of continuous functions (fn) in Ω converges uniformly to a function f :
Ω→ R, then f is continuous.

The space of bounded continuous functions on a space Ω is denoted Cb(Ω).

Theorem 2.4. (Cb(Ω),∥ · ∥∞) is a complete space: that is, every Cauchy sequence converges to a con-
tinuous bounded function, etc.

Theorem 2.5. Let (fn) be a sequence of Riemann integrable functions fn : [a,b] → R that converges
uniformly to a function f : [a,b]→ R. Then, f is Riemann integrable and

∫
fn →

∫
f .

Uniform convergence and differentiation do not interact as nicely. There are examples of sequences of
differentiable functions (fn), with (fn) converging uniformly to f , but (f ′

n) does not converge to f ′ (or
f ′ may fail to exist). This also does not hold even if the sequence is of infinitely differentiable functions.

2.2 Multivariate Continuity

We now introduce definitions of (uniform) continuity of functions defined over subsets of R2.

We write Ck(Ω) to denote the space of functions that are k times continuously differentiable over Ω, and
C∞(Ω) for the space of functions infinitely differentiable over Ω, also called functions that are smooth
over Ω.

A function f : Ω ⊂ R2 → R is continuous at x ∈ Ω if for every ϵ > 0, there exists δ(x,ϵ) > 0 such that
for all y ∈ Ω,

∥x− y∥ < δ → |f(y)− f(x)| < ϵ

Similarly, a function f : Ω ⊂ R2 → R is uniformly continuous if for every ϵ > 0, there exists δ(ϵ) > 0
such that for all x,y ∈ Ω,

∥x− y∥ < δ → |f(y)− f(x)| < ϵ

and again, the difference here is that δ is independent of x.

Theorem 2.6. Let Ω ⊂ R2 be closed and bounded. Then, any continuous function f : Ω → R is
furthermore uniformly continuous.

Theorem 2.7. Let f : [a,b]× [c,d]→ R be continuous. Define I : [c,d]→ R by

I(t) :=

∫ b

a

f(x,t) dx

Then, I is continuous.

Theorem 2.8 (Leibniz Integral Rule). Let f,∂f∂t be continuous functions on [a,b]× [c,d]. Then, for any
t ∈ (c,d),

d

dt

∫ b

a

f(x,t) dx =

∫ b

a

∂f

∂t
(x,t) dx

Theorem 2.9 (Fubini’s Theorem for Continuous Functions). Let f : [a,b] × [c,d] → R be continuous.
Then, ∫ b

a

∫ d

c

f(x,y) dy dx =

∫ d

c

∫ b

a

f(x,y) dx dy

Analysis III | 8
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Theorem 2.10. Let (fn) be a sequence of C1 functions on [a,b], and suppose fn → f (pointwise), and
f ′ ⇒ g (uniformly). Then, f is C1 and g = f ′ (that is, f ′

n ⇒ f ′).

2.3 Series
We now define the notions of pointwise and uniform convergence for series of functions.

Let (fk) be a sequence of functions fk : Ω → R, and let (Sn) be the sequence of partial sums of (fk),
with Sn : Ω→ R defined by

Sn(x) =

n∑
k=1

fk(x)

Then, the series

∞∑
k=1

fk(x)

is said to converge pointwise to S : Ω→ R in Ω if Sn → S pointwise in Ω, and to converge uniformly to
S in Ω if Sn ⇒ S uniformly on Ω.

Theorem 2.11. If (fk) is a series of integrable functions fk : [a,b] → R, and Sn converges uniformly,
then

∑∞
k=1 fk is Riemann integrable, and,∫ ∞∑

k=1

fk =

∞∑
k=1

∫
fk

Theorem 2.12. Let (fk) be a sequence of C1 functions fk : [a,b]→ R such that Sn converges pointwise,
and suppose that

∑n
k=1 f

′
k converges uniformly. Then,( ∞∑

k=1

fk

)′

=

∞∑
k=1

f ′
k

That is, the series is differentiable and can be differentiated term-by-term.

Theorem 2.13 (Weierstrass M-test). Let (fk) be a sequence of functions fk : Ω→ R, and suppose that
exists a sequence (Mk) of non-negative reals such that

• |fk(x)| ≤Mk for all k ∈ N and all x ∈ Ω;

•
∑∞

k=1 Mk converges.

Then, the series
∑∞

k=1 fn(x) converges absolutely and uniformly on Ω.

Proof. We show that the partial sums Sn =
∑n

k=1 fk(x) is uniformly Cauchy. Now, since
∑∞

k=1 Mk

converges, given ε > 0, there exists N such that

n∑
k=m+1

Mk < ε

for all m,n > N . Now,

|Sn(x)− Sm(x)| =

∣∣∣∣∣
n∑

k=1

fk(x)−
m∑

k=1

fk(x)

∣∣∣∣∣
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=

∣∣∣∣∣
n∑

k=m+1

fk(x)

∣∣∣∣∣
≤

n∑
k=m+1

|fk(x)|

≤
n∑

k=m+1

Mk

< ε

■

3 Complex Analysis

We quickly revisit some basic properties of the complex numbers.

The set of complex numbers C is given by

C = {x+ iy : x,y ∈ R}

where i is the imaginary unit, satisfying i2 = −1.

For a complex number z = x+ iy, we denote

• the real component of z by ℜ(z) = x;

• the complex component of z by ℑ(z) = y;

• the modulus or norm of z by |z| =
√

x2 + y2;

• the complex conjugate of z by z̄ = x− iy.

Theorem 3.1. The following statements hold for any complex numbers z,w ∈ C.

• ¯̄z = z;

• z + w = z̄ + w̄;

• zw = z̄w̄;

• |z̄| = |z|;

• |z|2 = zz̄

A sequence (zn)
∞
n=1 ⊂ C converges to a complex number z ∈ C if limn→∞ |zn − z| = 0. That is, if for

every ϵ > 0, there exists N > 0 such that |zn − z| < ϵ for all n > N .

A set Ω ⊆ C is open if for every x ∈ Ω, there exists r > 0 such that Br(x) ⊂ Ω, and a set Ω ⊆ C is closed
if Ωc = C \ Ω is open.

A set K ⊂ C is sequentially compact if every sequence (xj)
∞
j=1 ⊂ K has a convergent subsequence

(xj(ℓ))
∞
ℓ=1 whose limit is in K.

A function f : Ω ⊂ C→ C is continuous at z0 ∈ Ω if for every ϵ > 0, there exists a δ(x,ϵ) > 0 such that
for all z ∈ Ω,

|z − z0| < δ → |f(z)− f(z0)| < ϵ

This definition is identical to that of continuity for real functions, but with | · | now being a norm on C
rather than R, and in fact, coincides with the definition of continuity for functions R2 → R2.
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3.1 Complex Differentiability
Recall that a function f : R→ R is differentiable at a point p if the limit

lim
h→0

f(p+ h)− f(p)

h

exists, and this limit is the value of the derivative.

In contrast, a function f : Rn → Rk is differentiable at a point p if there exists a linear map Df ∈
L(Rn;Rk) such that

lim
h→0

|f(p+ h)− f(p)−Df(p)h|
|h|

= 0

and this linear map Df is the value of the derivative.

We use this definition because for k > 1, there is no well-defined notion of division of vectors.

However, unlike in R2, C does have a notion of division we can use, so we can return to the original
definition of differentiability, and so, differentiability for functions C→ C is distinct from (and in many
ways, more well-behaved than) functions R2 → R2.

Let Ω ⊂ C be an open set. A function f : C→ C is complex differentiable at a point z0 ∈ Ω if the limit

lim
h→0

f(z0 + h)− f(z0)

h

exists, and this limit is the value of the derivative.

However, here, h is a complex number, so there are many ways we could send h to 0. If this limit exists,
then its value should be independent of the path taken. We will write f(x,y) as u(x,y) + iv(x,y) to
separate out the real and imaginary components.

Now, consider approaching along the real axis. We have,

lim
h→0
h∈R

f(z0 + h)− f(z0)

h
=

∂f

∂x
(z0)

while approaching along the imaginary axis gives,

lim
h→0
h∈C

f(z0 + h)− f(z0)

h
=

1

i

∂f

∂y
(z0)

These values should be equal, and so,

i
∂f

∂x
=

∂f

∂y

i

(
∂u

∂x
+ i

∂v

∂x

)
=

∂u

∂y
+ i

∂v

∂y

−∂v

∂x
+ i

∂u

∂x
=

∂u

∂y
+ i

∂v

∂y

Equating the real and imaginary components, we have,

∂u

∂x
=

∂v

∂y
,

∂u

∂y
= −∂v

∂x

or more compactly,

ux = vy, uy = −vx
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These are the Cauchy-Riemann equations. For a complex derivative to exist, these equations must be
satisfied.

Moreover, if f : C→ C is a function that is differentiable when regarded as a function f : R2 → R, then
f is complex differentiable if and only if the Cauchy-Riemann equations hold.

This means that if the components u and v are real-differentiable functions of two real variables, then
u + iv is a complex-valued real-differentiable function, and is furthermore complex-differentiable if and
only if the Cauchy-Riemann equations hold. We can also replace the requirement that u and v are
differentiable with the requirement that all partial derivatives of u and v are continuous (as this implies
that u and v are real-differentiable).

Example. Consider the function f : C → C defined by z 7→ z2. u and v are clearly continuous, so f is
real-differentiable.

f(z) = (x+ iy)2

= x2 − y2 + 2ixy

so,

u(x,y) = x2 − y2, v(x,y) = 2xy

with partial derivatives

ux = 2x, uy = −2y, vx = 2y, vy = 2x

satisfying the Cauchy-Riemann equations, so f is also complex-differentiable.

A function f : Ω→ C is holomorphic at z0 ∈ Ω if there exists a neighbourhood U ⊆ Ω of z0 such that f
is complex-differentiable at all z ∈ U .

f is holomorphic in Ω if f is holomorphic at all z ∈ Ω, and we say that f is entire if it is holomorphic
on the whole of C.

A general function f : A→ B is analytic at a point if it is given locally by a convergent power series at
that point. That is, f is analytic at x0 if the Taylor series centred at x0 converges pointwise to f(x) for
every x in a neighbourhood U ⊆ B. Note that a function may be complex-differentiable at a point, but
not necessarily analytic.

Earlier, we mentioned that complex functions are sometimes more well-behaved than real functions; it
turns out that a complex-valued function is analytic if and only if it is holomorphic, so the terms are
sometimes used interchangably in the context of complex analysis.

Theorem 3.2 (Algebra of Complex Derivatives). Let f,g : Ω ⊆ C → C be complex-differentiable
functions. Then,

(f + g)′ = f ′ + g′, (fg)′ = f ′g + fg′,

(
f

g

)′

=
f ′g − fg′

g2
, (f(g))′ = f ′(g)g′

(assuming that g ̸= 0 in the third expression, and that the domains and codomains are appropriate in the
fourth).

Theorem 3.3. The function f : C→ C defined by z 7→ zn is entire for all n ∈ N, and f ′(z) = nzn−1.

3.2 Power Series
We define the notions of convergence of series in C similarly to that of series in R.
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Let (an)∞n=0 be a sequence of complex numbers an ∈ C. The series
∑∞

n=0 an is convergent if the sequence
of partial sums Sk =

∑k
n=0 an is convergent in C, and is absolutely convergent if the series

∑∞
n=0 |an| is

convergent in C.

The geometric series
∑∞

n=0 an is absolutely convergent if and only if |z| < 1 with limit

∞∑
n=0

zn =
1

1− z

and partial sums

Sk =
1− zk+1

1− z

Theorem 3.4 (Ratio Test). Let (an)∞n=0 be a sequence of complex numbers an ∈ C with an ̸= 0 for all
sufficiently large n, and define the quantity,

L := lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣
Then,

• if L < 1, then the series
∑∞

n=0 an converges absolutely;

• if L > 1, then the series
∑∞

n=0 an diverges;

• if L = 1 or the limit fails to exist, then the test is inconclusive.

Using suprema and infima, we can strengthen this test: define the quantities,

R := lim sup

∣∣∣∣an+1

an

∣∣∣∣ , r := lim inf

∣∣∣∣an+1

an

∣∣∣∣
Then,

• if R < 1, then the series
∑∞

n=0 an converges absolutely;

• if r > 1, then the series
∑∞

n=0 an diverges;

• if
∣∣∣an+1

an

∣∣∣ > 1 for all sufficiently large n, then the series
∑∞

n=0 an also diverges;

• otherwise, the test is inconclusive.

Theorem 3.5. Consider
∑∞

n=0 an and define the quantity,

r := lim sup n
√
|an|

• If r < 1, then the series converges;

• If r > 1, then the series diverges;

• If r = 1, then the test is inconclusive.

The root test is stronger than the ratio test: whenever the ratio test determines the convergence or
divergence of an infinite series, the root test does too, but not the converse.

Theorem 3.6. Given any sequence (an)
∞
n=0, there exists R ∈ [0,∞] such that

∞∑
n=0

anz
n
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converges for all |z| < R and diverges for |z| > R.

More specifically, this value is given by,

R =
1

lim sup n
√
an

Theorem 3.7. Let an ̸= 0 for all n ≥ N and suppose that limn→0
|an+1|
|an| exists. Then,

∑∞
n=0 anz

n has
radius of convergence,

R = lim
n→∞

|an|
|an+1|

Theorem 3.8. Suppose a series
∑∞

n=0 anz
n has radius of convergence R. Then, for all |z| < R, the

function f(z) =
∑∞

n=0 anz
n is differentiable and,

f ′(z) =

∞∑
n=1

nanz
n−1

That is, the derivative may be computed term by term.

Corollary 3.8.1. Let
∑∞

n=0 anz
n be a power series with radius of convergence R > 0. Then, the function

f(z) =
∑∞

n=0 anz
n is smooth (infinitely differentiable), and moreover,

f (n)(0)

n!
= an

for all n ∈ N0.

Theorem 3.9. Let
∑∞

n=0 anz
n be a power series with radius of convergence R > 0. Then, for every

r < R, the sequence of functions,

fk :=

k∑
n=0

anz
n

converges uniformly in |z| ≤ r.

3.3 The Complex Exponential
In this section, I write exp(z) instead of ez to emphasise that these power series are definitions and not
theorems, unlike the case for the real exponential.

We define the following power series for z ∈ C.

exp(z) :=

∞∑
n=0

1

n!
zn

= 1 + z +
z2

2!
+

z3

3!
+ · · ·

cos(z) :=

∞∑
n=0

(−1)n

(2n)!
z2n

= 1− z2

2!
+

z4

4!
− z6

6!
+ · · ·
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cosh(z) :=

∞∑
n=0

1

(2n)!
z2n

= 1 +
z2

2!
+

z4

4!
+

z6

6!
+ · · ·

sin(z) :=

∞∑
n=0

(−1)n

(2n+ 1)!
x2n+1

= z − z3

3!
+

z5

5!
− z7

7!
+ · · ·

sinh(z) :=

∞∑
n=0

1

(2n+ 1)!
z2n+1

= z +
z3

3!
+

z5

5!
+

z7

7!
+ · · ·

These functions are entire, converging for any z ∈ C.

Theorem 3.10. The following identities hold for all z ∈ C:

cos(z) =
exp(iz) + exp(−iz)

2
, cosh(z) =

exp(z) + exp(−z)
2

,

sin(z) =
exp(iz)− exp(−iz)

2i
, sinh(z) =

exp(z)− exp(−z)
2

cos(iz) = cosh(z), cosh(iz) = cos(z), sin(iz) = i sinh(z), sinh(iz) = i sin(z)

Theorem 3.11. The complex exponential function exp(z) satisfies the following:

• (Characteristic Property of the Exponential) exp(z+w) = exp(z) exp(e) for all z,w ∈ C, exp(1) = e;

• exp(z) ̸= 0 for all z ∈ C;

• exp(z) = 1 if and only if z = 2kπi with k ∈ Z;

• exp(z) = −1 if and only if z = (2k + 1)πi with k ∈ Z.

The third property implies that exp(z + w) = exp(z) if and only if w = 2kπi, k ∈ Z, so the exponential
function is periodic along the imaginary axis with period 2π.

3.4 The Complex Logarithm

Every complex number z = x+ iy ∈ C \ {0} can be written as reiθ, where r is the modulus of z, |z|, and
θ is the phase of z – the angle that the vector rooted at the origin pointing to z makes with the positive
real axis, measured counterclockwise. Note that for z = 0, this angle is undefined, and in any other case,
is unique only up to factors of 2π.

We define the multivalued argument function arg : C \ {0} → P(R) by

arg(z) = {θ ∈ R : z = |z|eiz}

The argument function is not a function in the usual sense as the image of each input is not uniquely
defined: in particular, if θ ∈ arg(z), then θ + 2kπ ∈ arg(z) for all k ∈ Z.

Theorem 3.12. The argument function arg(z) satisfies the following:

• arg(αz) = arg(z) for all real α > 0;

• arg(αz) = arg(z) + π = {θ + π : θ ∈ arg(z)} for all real α < 0;
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• arg(z̄) = − arg(z) = {−θ : θ ∈ arg(z)};

• arg
(
1
z

)
= − arg(z);

• arg(zw) = arg(z) + arg(w) = {θ + ϕ : θ ∈ arg(z),ϕ ∈ arg(w)}.

We define the principle value argument function Arg : C \ {0} → (−π,π] by taking the angle in arg(z)
that lies in the interval (−π,π]. Then, we have arg(z) = {Arg(z) + 2kπ : k ∈ Z}.

Note that the Arg function is not continuous in the entire complex plane. In particular, approaching the
negative real axis from the clockwise direction yields −π, while approaching from the counterclockwise
direction yields π. Making any other choice for the image of Arg leads to a similar issue along the
half-line where we define the ends of the image, where the arguments will differ by 2π when approaching
from different directions.

We wish to define an extension of the logarithm to the complex numbers, and to mark the distinction,
we will write ln to denote the ordinary real logarithm in R≥0, and log to denote our complex extension.
One defining characteristic of the real logarithm is that x = ln(y) if and only if ex = y – that is, the real
logarithm is the inverse of the real exponential.

Since ez = ez+2kπi for any k ∈ Z, then if w = log(z), then so is w + 2kπi, so the complex logarithm is
also multivalued.

Let z,w ∈ C such that w = log(z) = u+ iv. Then, we have,

z = eln(z)

= ew

= eu+iv

= (eu)eiv

But, z = |z|ei arg(z), so, equating the modulus and argument, we have eu = |z|, and v = arg(z), with the
modulus equation in particular implying that u = ln |z|.

We define the multivalued complex logarithm log : C \ {0} → P(R) by

log(z) := ln |z|+ i arg(z)

again noting that log(z) is undefined for z = 0, as ln |z| = ln(0) is undefined.

Theorem 3.13. The complex logarithm function log(z) satisfies the following:

• log(zw) = log(z) + log(w) (mod 2πi);

• log
(
z
w

)
= log(z)− log(w) (mod 2πi);

• exp(log(z)) = z;

• log(exp(z)) = z (mod 2πi).

We define the principle branch logarithm Log : C \ {0} → R≥0 by

Log(z) := ln |z|+ iArg(z)

Because the Arg function is discontinuous along the half-line x ≤ 0, the Log function is also discontinuous
along the same line: if we consider points z = x+ iϵ for x < 0 and sufficiently small ϵ > 0, we have,

lim
ϵ→0

Log(x± iϵ) = Log |x| ± iπ

so the function cannot be extended continuously along {x ≤ 0}. This half-line is called a branch cut, and
any definition of the principle value argument function results in such a half-line.
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From the identity,

eLog(z) = z

we have,

eLog(z)(Log(z))′ = 1

and hence,

(Log(z))′ =
1

z

With the complex extension of the natural logarithm, we can now define complex powers of complex
numbers. Given α,z ∈ C with z ̸= 0, we define,

zα := eLog(z
α)

= eαLog(z)

= eα ln |z|+αi arg(z)

= eα ln |z|+αiArg(z)+α2kiπ

= eα ln |z|+αiArg(z)eα2kiπ

where k ∈ Z, and we see that complex powers can be multivalued. Specfically, if α is an integer, then
eα2kiπ = 1, so there is only one value of zα. If α = p

q is rational with p ∈ Z,q ∈ N coprime, then

eα2kiπ = eα2(k+q)iπ

and zα will assume q distinct values. If α is irrational, then zα will take infinitely many values.

3.5 Complex Integration
For a function f : [a,b]→ C, we define,∫ b

a

f(t) dt :=

∫ b

a

ℜ
(
f(t)

)
dt+ i

∫ b

a

ℑ
(
f(t)

)
dt

So, integrating a complex-valued function reduces to integrating two real-valued functions.

Theorem 3.14. For every f,g : [a,b]→ C and every α,β ∈ C, we have,∫ b

a

αf(t) + βg(t) dt = α

∫ b

a

f(t) dt+ β

∫ b

a

g(t) dt

Theorem 3.15. For any function f : [a,b]→ C,

•
∫ b

a

f(t) dt =

∫ b

a

f(t) dt

•
∣∣∣∣∣
∫ b

a

f(t) dt

∣∣∣∣∣ ≤
∫ b

a

∣∣f(t)∣∣ dt
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3.6 Contour Integrals
The previous definition of an integral is a natural extension of real integration for integrating functions
R→ C, but what would it mean to integrate a function C→ C? Single integrals only make sense when
evaluated along 1 dimensional curves, so there is no natural extension in this case.

Because of this, we will only consider integrals of complex-valued functions along curves in the complex
plane called contours: ∫

Γ

f dz

where Γ is a contour in C. To evaluate such an integral, we begin by parametrising Γ by a function
γ : [a,b] → C given by γ(t) = x(t) + iy(t). We will also require that γ is C1, as we will require a
well-defined tangent at every point of the curve.

GIven a function f : Ω ⊆ C → C and a contour Γ ⊂ Ω ⊂ C parametrised by γ : [a,b] → C, the contour
integral of f over Γ is given by:∫

Γ

f dz :=

∫ b

a

f
(
γ(t)

)
γ′(t) dt

=

∫ b

a

ℜ
(
f
(
γ(t)

)
γ′(t)

)
dt+

∫ b

a

ℑ
(
f
(
γ(t)

)
γ′(t)

)
dt

If Γ is only piecewise C1, then we define,∫
Γ

f dz :=

n∑
i=1

∫
Γi

f dz

where (Γi)
n
i=1 are the C1 components of Γ.

Theorem 3.16. Let f : Ω ⊆ C → C and Γ ⊂ Ω such that f
∣∣
Γ

is continuous, and parametrise Γ by
γ+ : [a,b]→ C. Then,

• If γ− represents the parametrisation of Γ in the opposite direction from γ+, then,∫
γ−

f dz = −
∫
γ+

f dz

If Γ has an attached notion of direction or orientation , we call it a directed curve or directed
contour. In this case, we denote by −Γ the same curve swept in the opposite direction, so we may
reformulate the above result without reference to any particular parametrisation by:∫

−Γ

f dz = −
∫
Γ

f dz

• If γ̃ : [ã,b̃]→ C is another parametrisation of Γ that preserves orientation, then,∫
γ̃

f dz =

∫
γ

f dz

This property is called reparametrisation invariance.

Given a function f : C→ C and a curve parametrised by γ : [a,b]→ C, we define,∫
γ

f dz̄ :=

∫ b

a

f
(
γ(t)

)
γ′(t) dt
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Note that, unlike for functions f : [a,b]→ C, in general, for contour integrals,∫
γ

f(z) dz ̸=
∫
γ

f(z) dz

We instead have, ∫
γ

f(z) dz =

∫
γ

f(z) dz̄

Given a function f : C→ C and a curve parametrised by γ : [a,b]→ C, we define,∫
γ

|f ||dz| :=
∫ b

a

∣∣∣f(γ(t))∣∣∣∣∣γ′(t)
∣∣ dt

Note that
∫
γ
|f ||dz| ≥ 0, so we have, ∣∣∣∣∫

γ

f dz

∣∣∣∣ ≤ ∫
γ

|f ||dz|

If f(z) = 1, then we also have, ∫
γ

|dz| = L(γ)

where L(γ) is the length of γ.

Theorem 3.17. Suppose that Ω is an open set, and F : Ω ⊆ C→ C is holomorphic, such that f(z) := dF
dz

is continous. Let γ : [a,b]→ Ω be a C1 curve. Then,∫
γ

f dz = F
(
γ(b)

)
− F

(
γ(a)

)
A set Ω ⊂ C is connected if it cannot be expressed as the union of non-empty open sets Ω1 and Ω2 such
that Ω1 ∩ Ω2 = ∅.

An open connected set Ω ⊂ C is simply connected if every closed curve in Ω can be continuously deformed
to a point (more precisely, every closed curve is homotopic to a constant function). An example of a set
that is not simply connected is an annulus (a 2D torus; a ring): any closed curve that encircles the hole
cannot be continuous deformed into a point as it must always encircle the hole.

Theorem 3.18 (Cauchy). Let f : Ω → C be holomorphic, with Ω open and simply connected, and let
γ ⊂ Ω be a C1 closed curve. Then, ∫

γ

f(z) dz = 0

A parametrisation of a simple closed curve is positively oriented if, when following the direction of
parametrisation, the interior is to our left, and is negatively oriented otherwise. For example, the
counterclockwise parametrisation of the unit circle given by γ(t) = (cos(t), sin(t)) is positively oriented.

However, take an annulus, for example. This region has two boundary curves; an exterior and interior
boundary. The exterior boundary is positively oriented if it has a counterclockwise parametrisation, but
the interior boundary is positively oriented if it has a clockwise parametrisation.
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Theorem 3.19 (Deformation of Contours). Let Ω ⊂ C be a region bounded by two simple curves, γ1
exterior and γ2 interior, both oriented positively, and let f be a function holomorphic over Ω ∪ γ1 ∪ γ2.
Then, ∫

γ1

f(z) dz +

∫
γ2

f(z) dz = 0

If we denote by γ−
2 the counterclockwise parametrisation of γ2, then,∫

γ1

f(z) dz =

∫
γ−
2

f(z) dz

That is, the integral is the same along both curves when both are parametrised in the same direction.

Given a simple closed C1 curve γ, we denote by I(γ) the region interior to γ, and by O(γ) the region
exterior to γ.

Theorem 3.20. Let γ : [a,b] → C be a positively oriented simple closed C1 curve, and suppose f is a
function holomorphic over γ ∪ I(γ). Then, for all z ∈ I(γ),

f(z) =
1

2πi

∫
γ

f(w)

w − z
dw

This theorem says that we can recover the value of f at any point z by integrating along a closed curve
around that point, given some restrictions on the curve.

Theorem 3.21. Let γ : [a,b] → C be a positively oriented simple closed C1 curve, and suppose f is a
function holomorphic over γ ∪ I(γ). Then, for all z ∈ I(γ), f is smooth (infinitely differentiable), and
the nth derivative is given by

f (n)(z) =
n!

2πi

∫
γ

f(w)

(w − z)n+1
dw

Theorem 3.22 (Taylor Series Expansion). Let f be holomorphic on Br(a) for a ∈ C, r > 0. Then,
there exist unique constants cn, n ∈ N such that, fo all z ∈ Br(a)

f(z) =

∞∑
n=0

cn(z − a)n

That is, a holomorphic function is analytic.

Moreover, the coefficients cn are given by

an =
1

2πi

∫
γ

f(w)

(w − a)n+1
dw

=
f (n)(a)

n!

where γ is any positively oriented parametrisation of a simple closed curve Γ ⊂ Br(a) that is piecewise
C1 with a ∈ I(γ).

Theorem 3.23 (Liouville). Let f : C→ C be entire (analytic over C) and bounded. Then, f is constant.

Proof. Given two points x and y, consider the open balls Br(x) and Br(y), where r > |x − y|. For
sufficiently large r, the two balls coincide except for an arbitrarily small proportion of their volume.
Since f is bounded and entire functions are harmonic, by the mean value property, the averages of f
over the two balls are arbitarily close so f takes the same value at x and y. Since x and y were arbitrary,
f is constant. ■
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Theorem 3.24 (Fundamental Theorem of Algebra). Every non-constant polynomial p ∈ C[x] has a root
in C – that is, there exists α ∈ C such that p(α) = 0.

Theorem 3.25. Let Ω be open, and let fn : Ω→ C be a sequence of analytic functions. If fn converges
uniformly to f , then f is analytic.

A function f defined on a subset of C is said to have a pole of order m ∈ N at a ∈ C if there is a
neighbourhood U of a such that for any z ∈ U ,

f(z) =
c−m

(z − a)m
+

cm−1

(z − a)m−1
+ · · ·+ c−2

(z − a)2
+

c−1

(z − a)
+ ϕ(z)

where ϕ is analytic in U , (c−k)
m
k=1 ⊂ C, and c−m ̸= 0. The coefficient c−1 is called the residue of f at

a, also denoted Res
(
f(a)

)
. This expansion is also called a Laurent polynomial.

A function that is holomorphic at all points of an open subset Ω ⊂ C apart from some poles is said to
be meromorphic on Ω.

Theorem 3.26 (Cauchy’s Residue Theorem). Let γ ⊂ C be a simple closed positively oriented piecewise
C1 curve, and let f be meromorphic on I(γ) with poles (zk)

n
k=1 ⊂ I(γ). Then,∫

γ

f = 2πi

n∑
k=1

Res
(
f(zk)

)
Lemma 3.27. Let f,g : U → C be holomorphic on an open neighbourhood U of a ∈ C, and suppose
g(a) = 0, but g′(a) ̸= 0. Then, provided f(a) ̸= 0, the function f

g has a pole of order 1 at a, and,

Res

(
f

g
(a)

)
=

f(a)

g′(a)

Example. Compute, ∫ ∞

−∞

1

z2 + 1
dz

We factorise the integrand into,

f(z) =
1

(z − i)(z + i)

and we can see that f has a pole at z = i and at z = −i, and is analytic elsewhere. We compute the
residues of the poles:

f(z) =
1/(z + i)

(z − i)

Res[f(z)]z=i =
1

z + i

=
1

2i

f(z) =
1/(z − i)

(z + i)

Res[f(z)]z=−i =
1

z − i

= − 1

2i
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(We only need one of these, but both have been shown for purposes of illustration.)

Next, we create a positively oriented contour by following along the real line from −R to R, then closing
the contour with a semicircular arc in the complex plane, so we have,∮

Γ

1

z2 + 1
dz =

∫ R

−R

1

z2 + 1
dz +

∫
arc

1

z2 + 1
dz

The resulting loop contour also encloses the pole at z = +i, so by the residue theorem, we have,∮
Γ

1

z2 + 1
dz = 2πiRes[f(z)]z=i

= 2πi
1

2i
= π

π =

∫ R

−R

1

z2 + 1
dz +

∫
arc

1

z2 + 1
dz

We parametrise the arc as Reiθ for 0 ≤ θ ≤ π,∫
arc

1

z2 + 1
dz =

∫ π

0

1

(Reiθ)2 + 1

dz

dθ
dθ

=

∫ π

0

1

R2ei2θ + 1
iReiθ dθ

=

∫ π

0

iReiθ

R2ei2θ + 1
dθ∣∣∣∣∫

arc

1

z2 + 1
dz

∣∣∣∣ ≤ ∫ π

0

∣∣∣∣ iReiθ

R2ei2θ + 1

∣∣∣∣ dθ
=

∫ π

0

R

|Rei2θ + 1|
dθ

≤
∫ π

0

R

R2 − 1
dθ

= π
R

R2 − 1

so this integral vanishes as R→∞, leaving,∫ ∞

−∞

1

z2 + 1
dz = π
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